Neurologist and clinician scientist with a basic, translational and clinical research program, focused mostly on stroke and other brain injuries. The laboratory utilizes a variety of cell free, tissue culture and in-vivo techniques to design and characterize a series of carbon nanomaterials that possess the ability to act as catalytic antioxidants as well as support key mitochondrial functions. This NIH-supported research is in collaboration with synthetic nano-chemists at Rice University (Tour Lab) and biochemists at University of Texas Health Science Center Houston (Tsai Lab). The group is testing a variety of engineered modifications of these versatile, non-toxic materials to address specific cell injury and death mechanisms including ferroptosis and interruption in electron transport and oxidative phosphorylation.
A major interest of ours is the role of diabetes in worsening outcome from stroke, a condition that affects minority and rural Texans disproportionally. With a range of research from molecular interactions to whole animal and clinical studies, the work in this lab is deeply translational, leveraging the group's clinical training and experience to insure that conclusions have direct relevance to the disease state, with the ultimate goal of facilitating the identification of new therapies for these major contributors to disability and mortality.