Our laboratory is interested in the mechanisms by which enzymes are regulated in the cell. In particular, we are interested in allosteric regulation of enzyme activity. Consequently, we are interested in understanding the nature of the conformational change in proteins that can be effected by the binding of ligands, and specifically how these changes alter the catalytic behavior of enzymes subject to allosteric regulation. We endeavor to investigate properties that are complementary to those determined by x-ray crystallography in order to develop a comprehensive picture of the structure-function relationships involved in the regulatory phenomenon. For example, we are interested in how the dynamics of protein structure might dictate the nature of an allosteric effect. Techniques and approaches that we use in the laboratory include analysis of enzyme kinetics; analysis of the thermodynamics of enzyme-ligand interactions; time-resolved and steady-state fluorescence spectroscopy; analysis of the effects of temperature and hydrostatic pressure (up to 4 kbar) on enzyme properties, site-specific mutagenesis, isothermal titration calorimetry, and molecular graphics.