Linked-function origins of cooperativity in a symmetrical dimer. Academic Article uri icon

abstract

  • The thermodynamic origins of substrate binding cooperativity in a dimeric enzyme that can bind one substrate (A) and one allosteric ligand (X) to each of two identical subunits are discussed. It is assumed that maximal activity is not subject to allosteric modification and that the substrates and allosteric ligands achieve binding equilibrium in the steady state. Each uniquely ligated form is assumed to be capable of exhibiting unique binding properties, and only the principles of thermodynamic linkage are used to constrain the system further. The explicit relationship between the Hill coefficient, the concentration of X, and the magnitudes of the relevant coupling free energies and dissociation constants is derived. In the absence of X only the homotropic coupling between substrate sites contributes to a nonhyperbolic substrate saturation profile. An allosteric ligand, X, can alter the cooperativity in two distinct ways, one mechanism being manifested when X is saturating and the only only when X is present at saturating concentrations. By evaluating the concentration of substrate required to produce half-maximal velocity as a function of [X], as well as the Hill coefficients when X is absent and fully saturating, the dissociation and coupling constants most important for understanding the mechanisms of allosteric action in an enzyme of this type can be determined.

published proceedings

  • Biophys Chem

author list (cited authors)

  • Reinhart, G. D.

citation count

  • 52

complete list of authors

  • Reinhart, GD

publication date

  • January 1988