selected publications academic article Guermond, J., Nazarov, M., & Popov, B. (2024). Finite element-based invariant-domain preserving approximation of hyperbolic systems: Beyond second-order accuracy in space. Computer Methods in Applied Mechanics and Engineering. 418, 116470-116470. Clayton, B., Guermond, J., Maier, M., Popov, B., & Tovar, E. J. (2023). Robust second-order approximation of the compressible Euler equations with an arbitrary equation of state. Journal of Computational Physics. 478, 111926-111926. Guermond, J., Kees, C., Popov, B., & Tovar, E. (2022). Hyperbolic relaxation technique for solving the dispersive Serre-Green-Naghdi equations with topography. Journal of Computational Physics. 450, 110809-110809. Clayton, B., Guermond, J., & Popov, B. (2022). INVARIANT DOMAIN-PRESERVING APPROXIMATIONS FOR THE EULER EQUATIONS WITH TABULATED EQUATION OF STATE. SIAM Journal on Scientific Computing. 44(1), A444-A470. Guermond, J., Kronbichler, M., Maier, M., Popov, B., & Tomas, I. (2022). On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering. 389, 114250-114250. Guermond, J., Popov, B., & Saavedra, L. (2021). Second-Order Invariant Domain Preserving ALE Approximation of Euler Equations. 5(2), 923-945. Guermond, J., Maier, M., Popav, B., & Tomas, I. (2021). Second-order invariant domain preserving approximation of the compressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering. 375, 113608-113608. Popov, B., & Hua, Y. (2021). INVARIANT DOMAIN PRESERVING CENTRAL SCHEMES FOR NONLINEAR HYPERBOLIC SYSTEMS. COMMUNICATIONS IN MATHEMATICAL SCIENCES. 19(2), 529-556. Guermond, J., Popov, B., & Ragusa, J. (2020). POSITIVE AND ASYMPTOTIC PRESERVING APPROXIMATION OF THE RADIATION TRANSPORT EQUATION. SIAM Journal on Numerical Analysis. 58(1), 519-540. Guermond, J., Popov, B., & Saavedra, L. (2020). Second-order invariant domain preserving ALE approximation of hyperbolic systems. Journal of Computational Physics. 401, 108927-108927. Guermond, J., Popov, B., Tovar, E., & Kees, C. (2019). Robust explicit relaxation technique for solving the Green-Naghdi equations. Journal of Computational Physics. 399, 108917-108917. Guermond, J., Popov, B., & Tomas, I. (2019). Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems. 347, 143-175. Guermond, J., Klingenberg, C., Popov, B., & Tomas, I. (2019). The Suliciu approximate Riemann solver is not invariant domain preserving. Journal of Hyperbolic Differential Equations. 16(1), 59-72. Guermond, J., Nazarov, M., Popov, B., & Tomas, I. (2018). SECOND-ORDER INVARIANT DOMAIN PRESERVING APPROXIMATION OF THE EULER EQUATIONS USING CONVEX LIMITING. SIAM Journal on Scientific Computing. 40(5), A3211-A3239. Guermond, J., de Luna, M. Q., Popov, B., Kees, C. E., & Farthing, M. W. (2018). WELL-BALANCED SECOND-ORDER FINITE ELEMENT APPROXIMATION OF THE SHALLOW WATER EQUATIONS WITH FRICTION. SIAM Journal on Scientific Computing. 40(6), A3873-A3901. Guermond, J., Popov, B., & Yang, Y. (2017). The Effect of the Consistent Mass Matrix on the Maximum-Principle for Scalar Conservation Equations. Journal of Scientific Computing. 70(3), 1358-1366. Guermond, J., & Popov, B. (2017). INVARIANT DOMAINS AND SECOND-ORDER CONTINUOUS FINITE ELEMENT APPROXIMATION FOR SCALAR CONSERVATION EQUATIONS. SIAM Journal on Numerical Analysis. 55(6), 3120-3146. Guermond, J., Popov, B., Saavedra, L., & Yang, Y. (2017). INVARIANT DOMAINS PRESERVING ARBITRARY LAGRANGIAN EULERIAN APPROXIMATION OF HYPERBOLIC SYSTEMS WITH CONTINUOUS FINITE ELEMENTS. SIAM Journal on Scientific Computing. 39(2), A385-A414. Azerad, P., Guermond, J., & Popov, B. (2017). WELL-BALANCED SECOND-ORDER APPROXIMATION OF THE SHALLOW WATER EQUATION WITH CONTINUOUS FINITE ELEMENTS. SIAM Journal on Numerical Analysis. 55(6), 3203-3224. Guermond, J., & Popov, B. (2016). Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations. 321, 908-926. Guermond, J., Popov, B., & Tomov, V. (2016). Entropy-viscosity method for the single material Euler equations in Lagrangian frame. Computer Methods in Applied Mechanics and Engineering. 300, 402-426. Guermond, J., & Popov, B. (2016). ERROR ESTIMATES OF A FIRST-ORDER LAGRANGE FINITE ELEMENT TECHNIQUE FOR NONLINEAR SCALAR CONSERVATION EQUATIONS. SIAM Journal on Numerical Analysis. 54(1), 57-85. Guermond, J., & Popov, B. (2016). INVARIANT DOMAINS AND FIRST-ORDER CONTINUOUS FINITE ELEMENT APPROXIMATION FOR HYPERBOLIC SYSTEMS. SIAM Journal on Numerical Analysis. 54(4), 2466-2489. Guermond, J., & Popov, B. (2015). Entropy Viscosity and L1-based Approximations of PDEs: Exploiting Sparsity Popov, B., & Tomov, V. (2015). CENTRAL SCHEMES FOR MEAN FIELD GAMES. COMMUNICATIONS IN MATHEMATICAL SCIENCES. 13(8), 2177-2194. Bonito, A., Guermond, J., & Popov, B. (2014). STABILITY ANALYSIS OF EXPLICIT ENTROPY VISCOSITY METHODS FOR NON-LINEAR SCALAR CONSERVATION EQUATIONS. Mathematics of Computation. 83(287), 1039-1062. Guermond, J., Nazarov, M., Popov, B., & Yang, Y. (2014). A SECOND-ORDER MAXIMUM PRINCIPLE PRESERVING LAGRANGE FINITE ELEMENT TECHNIQUE FOR NONLINEAR SCALAR CONSERVATION EQUATIONS. SIAM Journal on Numerical Analysis. 52(4), 2163-2182. Guermond, J., & Popov, B. (2014). VISCOUS REGULARIZATION OF THE EULER EQUATIONS AND ENTROPY PRINCIPLES. SIAM Journal on Applied Mathematics. 74(2), 284-305. Zingan, V., Guermond, J., Morel, J., & Popov, B. (2013). Implementation of the entropy viscosity method with the discontinuous Galerkin method. Computer Methods in Applied Mechanics and Engineering. 253, 479-490. Mehmetoglu, O., & Popov, B. (2012). MAXIMUM PRINCIPLE AND CONVERGENCE OF CENTRAL SCHEMES BASED ON SLOPE LIMITERS. Mathematics of Computation. 81(277), 219-231. Guermond, J., Pasquetti, R., & Popov, B. (2011). From Suitable Weak Solutions to Entropy Viscosity. Journal of Scientific Computing. 49(1), 35-50. Guermond, J., Pasquetti, R., & Popov, B. (2011). Entropy viscosity method for nonlinear conservation laws. Journal of Computational Physics. 230(11), 4248-4267. Kopotun, K. A., & Popov, B. (2010). Moduli of smoothness of splines and applications in constrained approximation. Jaen Journal on Approximation. 2(1), 79-91. Dobrev, V., Guermond, J., & Popov, B. (2010). SURFACE RECONSTRUCTION AND IMAGE ENHANCEMENT VIA L-1-MINIMIZATION. SIAM Journal on Scientific Computing. 32(3), 1591-1616. Guermond, J., & Popov, B. (2009). AN OPTIMAL L(1)-MINIMIZATION ALGORITHM FOR STATIONARY HAMILTON-JACOBI EQUATIONS. COMMUNICATIONS IN MATHEMATICAL SCIENCES. 7(1), 211-238. Christov, I., & Popov, B. (2008). New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. 227(11), 5736-5757. Guermond, J., & Popov, B. (2008). L-1-minimization methods for Hamilton-Jacobi equations: the one-dimensional case. Numerische Mathematik. 109(2), 269-284. Guermond, J., Marpeau, F., & Popov, B. (2008). Fast algorithm for solving first-order PDES by L-1-minimization. COMMUNICATIONS IN MATHEMATICAL SCIENCES. 6(1), 199-216. Guermond, J., & Popov, B. (2008). L-1-APPROXIMATION OF STATIONARY HAMILTON-JACOBI EQUATIONS. SIAM Journal on Numerical Analysis. 47(1), 339-362. Guermond, J., & Popov, B. (2007). Linear advection with ill-posed boundary conditions via L1-minimization. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING. 4(1), 39-47. Kurganov, A., Petrova, G., & Popov, B. (2007). Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM Journal on Scientific Computing. 29(6), 2381-2401. Popov, B., & Trifonov, O. (2006). One-sided stability and convergence of the Nessyahu-Tadmor scheme. Numerische Mathematik. 104(4), 539-559. Popov, B., & Trifonov, O. (2006). Order of convergence of second order schemes based on the minmod limiter. Mathematics of Computation. 75(256), 1735-1753. Efendiev, Y., & Popov, B. (2005). On homogenization of nonlinear hyperbolic equations. Communications on Pure and Applied Analysis. 4(2), 295-309. Konyagin, S., Popov, B., & Trifonov, O. (2005). On convergence of minmod-type schemes. SIAM Journal on Numerical Analysis. 42(5), 1978-1997. Liu, J. G., Popov, B., Hong, H., & Ewing, R. E. (2005). Convergence analysis of wavelet schemes for convection-reaction equations under minimal regularity assumptions. SIAM Journal on Numerical Analysis. 43(2), 521-539. Kopotun, K., Neamtu, M., & Popov, B. (2003). Weakly nonoscillatory schemes for scalar conservation laws. Mathematics of Computation. 72(244), 1747-1767. Petrova, G., & Popov, B. (2001). Linear Transport Equations with -Monotone Coefficients. Journal of Mathematical Analysis and Applications. 260(2), 307-324. Petrova, G., & Popov, B. (1999). Linear transport equations with discontinuous coefficients. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. 24(9-10), 1849-1873. Kostenko, S. B., & Popov, B. A. (1993). Uniform approximation of modified Bessel function. Fiziko-Khimicheskaya Mekhanika Materialov. 29(6), 125-127. Popov, B. A. (1993). Methods for determining node location in asymptotically uniform spline approximation. Journal of Mathematical Sciences. 66(5), 2451-2458. Sokolov, V. M., Koval'chuk, L. A., Popov, B. A., & Balkovoi, Y. V. (1989). Activity of nitrogen and sulfur in metallic melts. Russian Metallurgy. 27-32. Sokolov, V. M., Tesler, G. S., Popov, B. A., & Koval'chuk, L. A. (1988). Temperature dependence of the activity coefficient of carbon in multicomponent iron-based melts. 1(1), 43-46. Sokolov, V. M., Tesler, G. S., Popov, B. A., & Koval'chuk, L. A. (1987). CALCULATION OF THE SOLUBILITY-TEMPERATURE RELATIONSHIP FOR NITROGEN IN NICKEL MELTS. Russian Metallurgy. 36-41. Yarema, S. Y., Mel'nichok, L. S., & Popov, B. A. (1984). Dispersion in fatigue crack growth rate and processing of experimental data. Materials Science. 20(3), 259-265. chapter Popov, P., & Popov, B. (2009). A Second Order Central Scheme for Hamilton-Jacobi Equations on Triangular Grids. Lecture Notes in Computer Science. Numerical Analysis and Its Applications. (pp. 476-485). Springer Nature. Christov, I., Mishev, I. D., & Popov, B. (2009). Finite volume methods on unstructured Voronoi meshes for hyperbolic conservation laws. Hyperbolic Problems: Theory, Numerics and Applications. (pp. 507-+). American Mathematical Society (AMS). conference paper Pasquetti, R., Guermond, J. L., & Popov, B. (2015). Stabilized Spectral Element Approximation of the Saint Venant System Using the Entropy Viscosity Technique. Lecture Notes in Computational Science and Engineering. 397-404. Guermond, J., & Popov, B. (2014). ENTROPY VISCOSITY FOR THE EULER EQUATIONS AND QUESTIONS REGARDING PARABOLIC REGULARIZATION. 119-124. Guermond, J., Pasquetti, R., & Popov, B. (2011). From suitable weak solutions to entropy viscosity. Ercoftac Series. 373-+. Popov, P., & Popov, B. (2009). A Second Order Central Scheme for Hamilton-Jacobi Equations on Triangular Grids. Lecture Notes in Computer Science. 476-+. Dobrev, V., Guermond, J., & Popov, B. (2009). Surface Reconstruction via L1-Minimization. Lecture Notes in Computer Science. 32-43. Popov, B. (1996). Nonlinear best Chebyshev approximations and splines. 128-131. institutional repository document Clayton, B., Guermond, J., Maier, M., Popov, B., & Tovar, E. J. (2022). Robust second-order approximation of the compressible Euler equations with an arbitrary equation of state Guermond, J., Kronbichler, M., Maier, M., Popov, B., & Tomas, I. (2021). On the implementation of a robust and efficient finite element-based parallel solver for the compressible Navier-Stokes equations Guermond, J., Kees, C., Popov, B., & Tovar, E. (2021). Hyperbolic relaxation technique for solving the dispersive Serre-Green-Naghdi Equations with topography Guermond, J., Popov, B., & Ragusa, J. (2019). Positive asymptotic preserving approximation of the radiation transport equation Guermond, J., Popov, B., & Tomas, I. (2018). Invariant domain preserving discretization-independent schemes and convex limiting for hyperbolic systems Guermond, J., Nazarov, M., Popov, B., & Tomas, I. (2017). Second-order invariant domain preserving approximation of the Euler equations using convex limiting Guermond, J., & Popov, B. (2015). Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations Guermond, J., & Popov, B. (2015). Invariant domains and first-order continuous finite element approximation for hyperbolic systems
principal investigator on High-Order Invariant Domain Preserving-Numerical Methods for Nonlinear Hyperbolic Systems- awarded by National Science Foundation - (Arlington, Virginia, United States) 2016 - 2020 High-Order Approximation Techniques for Nonlinear Hyperbolic Pdes awarded by National Science Foundation - (Arlington, Virginia, United States) 2012 - 2016
co-principal investigator on Robust approximation of nonlinear conservation equations awarded by United States Army - (Washington D.C., District of Columbia, United States) 2019 - 2023 Robust and Accurate Approximation of Hyperbolic Systems awarded by United States Air Force - (Arlington, Virginia, United States) 2018 - 2021 Finite Element Approximation of Nonlinear Systems Developing Shocks, Fronts and Interfaces awarded by United States Army - (Washington D.C., District of Columbia, United States) 2015 - 2019 Robust Approximation of Nonlinear Hyperbolic Systems awarded by United States Air Force - (Arlington, Virginia, United States) 2015 - 2017 Entropy Viscosity and L-1 Based Approximations of Pdes: Exploiting Sparsity awarded by United States Air Force - (Arlington, Virginia, United States) 2012 - 2015
teaching activities MATH304 Linear Algebra Instructor MATH308 Differential Equations Instructor MATH309 Linear Alg For Diff Eq Instructor MATH412 Theory Of Pdes Instructor MATH417 Numerical Methods Instructor MATH437 Princ Of Numerical Analy Instructor MATH491 Research Instructor MATH602 Meth Appl Part Diff Eq Instructor MATH609 Numerical Analysis Instructor MATH638 Conservation Laws Instructor MATH685 Directed Studies Instructor MATH691 Research Instructor
chaired theses and dissertations Mehmetoglu, Orhan (2012-10). Stability and Convergence of High Order Numerical Methods for Nonlinear Hyperbolic Conservation Laws. Tomov, Vladimir (2014-04). Entropy Viscosity Method for Lagrangian Hydrodynamics and Central Schemes for Mean Field Games.
education and training Ph.D., University of South Carolina - (Columbia, South Carolina, United States) 1999 M.S., Technical University of Sofia - (Sofia, Bulgaria) 1992