SECOND-ORDER INVARIANT DOMAIN PRESERVING APPROXIMATION OF THE EULER EQUATIONS USING CONVEX LIMITING
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2018 Society for Industrial and Applied Mathematics. A new second-order method for approximating the compressible Euler equations is introduced. The method preserves all the known invariant domains of the Euler system: positivity of the density, positivity of the internal energy, and the local minimum principle on the specific entropy. The technique combines a first-order, invariant domain preserving, guaranteed maximum speed method using a graph viscosity (GMS-GV1) with an invariant domain violating, but entropy consistent, high-order method. Invariant domain preserving auxiliary states, naturally produced by the GMS-GV1 method, are used to define local bounds for the high-order method, which is then made invariant domain preserving via a convex limiting process. Numerical tests confirm the second-order accuracy of the new GMS-GV2 method in the maximum norm, where the 2 stands for second-order. The proposed convex limiting is generic and can be applied to other approximation techniques and other hyperbolic systems.