Robust second-order approximation of the compressible Euler equations with an arbitrary equation of state Institutional Repository Document uri icon


  • This paper is concerned with the approximation of the compressible Euler equations supplemented with an arbitrary or tabulated equation of state. The proposed approximation technique is robust, formally second-order accurate in space, invariant-domain preserving, and works for every equation of state, tabulated or analytic, provided the pressure is nonnegative. An entropy surrogate functional that grows across shocks is proposed. The numerical method is verified with novel analytical solutions and then validated with several computational benchmarks seen in the literature.

altmetric score

  • 0.25

author list (cited authors)

  • Clayton, B., Guermond, J., Maier, M., Popov, B., & Tovar, E. J.

citation count

  • 0

complete list of authors

  • Clayton, Bennett||Guermond, Jean-Luc||Maier, Matthias||Popov, Bojan||Tovar, Eric J

Book Title

  • arXiv

publication date

  • July 2022