MAXIMUM PRINCIPLE AND CONVERGENCE OF CENTRAL SCHEMES BASED ON SLOPE LIMITERS
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
A maximum principle and convergence of second order central schemes is proven for scalar conservation laws in dimension one. It is well known that to establish a maximum principle a nonlinear piecewise linear reconstruction is needed and a typical choice is the minmod limiter. Unfortunately, this implies that the scheme uses a first order reconstruction at local extrema. The novelty here is that we allow local nonlinear reconstructions which do not reduce to first order at local extrema and still prove maximum principle and convergence. 2011 American Mathematical Society.