Positive and Asymptotic Preserving Approximation of the Radiation Transport Equation Academic Article uri icon


  • We introduce a (linear) positive and asymptotic preserving method or solving the one-group radiation transport equation. The approximation in space is discretization agnostic: the space approximation can be done with continuous or discontinuous finite elements (or finite volumes, or finite differences). The method is first-order accurate in space. This type of accuracy is coherent with Godunov's theorem since the method is linear. The two key theoretical results of the paper are Theorem~4.4 and Theorem~4.8. The method is illustrated with continuous finite elements. It is observed to converge with the rate $calO(h)$ in the $L^2$-norm on manufactured solutions, and it is $calO(h^2)$ in the diffusion regime. Unlike other standard techniques, the proposed method does not suffer from overshoots at the interfaces of optically thin and optically thick regions.

published proceedings

  • SIAM Journal on Numerical Analysis

author list (cited authors)

  • Guermond, J., Popov, B., & Ragusa, J.

citation count

  • 2

complete list of authors

  • Guermond, Jean-Luc||Popov, Bojan||Ragusa, Jean

publication date

  • January 2020