CENTRAL SCHEMES FOR MEAN FIELD GAMES
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2015 International Press. Mean field type models have been recently introduced and analyzed by Lasry and Lions. They describe a limiting behavior of stochastic differential games as the number of players tends to infinity. Numerical methods for the approximation of such models have been developed by Achdou, Camilli, Capuzzo-Dolcetta, Gueant, and others. Efficient algorithms for such problems require special efforts and so far all methods introduced have been first order accurate. In this manuscript we design a second order accurate numerical method for time dependent Mean Field Games. The discretization is based on central schemes which are widely used in hyperbolic conservation laws.