Our laboratory focuses on systemic analysis of biochemical, molecular and biological functions of AGO family proteins (AGOs-mics) in genetically tractable Arabidopsis and economically important crops (i.e. rice). We'd like to identify the small RNAs, mRNA targets and protein components which associate with these AGOs. We will study protein/RNA and protein/protein interactions in these RISC assembly events. Our goal is to understand how these AGOs are functionally specialized or redundant corresponding to endogenous development cues and external environmental stimuli. Particularly, we'd like to learn how plants reprogram their gene expression through the small RNAs and AGOs to construct a new cellular niche in responses to environmental challenges and biotic stresses.
Another aspect of our research involves host/virus interaction. Plants take advantage of RNA silencing pathways to defend themselves from exogenous nucleic acid invaders (i.e. viruses). As an anti-host defense mechanism, viruses encode suppressors that can block RNA silencing responses. We have recently demonstrated that CMV 2b disables AGO1 cleavage activity to inhibit RNA silencing and to counter host defense. We are now extending our study to suppressors of several other viruses and the molecular mechanisms of their suppression.