Dr. Sato has a broad research background in circadian biology combined with growing knowledge in biochemistry, epigenetics, and metabolism. Especially during his second postdoctoral career in the laboratory of the late Paolo Sassone-Corsi at UCI, he has been tackling the question of how the circadian clock links to metabolic functions. Dr. Sato demonstrated the circadian control of metabolic pathways is reprogramed by aging, which is rescued by caloric restriction (Sato et al., Cell 2017). More recently, Dr. Sato investigated the time-dependent impact of exercise, revealing exercise at the early active phase (fasted phase) exerts robust metabolic responses in skeletal muscle (Sato et al., Cell Metab 2019) and illustrating the atlas of exercise metabolism unique to different exercise timing (Sato et al., Cell under revision). Lastly, Dr. Sato discovered a novel non-canonical role played by the circadian clock specific to pluripotent stem cells (Sato et al., in preparation). Taken together, his past/ongoing studies contribute to the accumulation of evidence underscoring a healthy lifestyle relied on biological clocks.
The goals of Sato lab will be to 1) achieve a fundamental understanding of the intertwined link between metabolism, epigenetics, and the circadian clock, and 2) establish translational interventions targeting the circadian clock system to promote human health by using molecular, biochemical, physiological, and bioinformatics approaches.