Adaptive effects of the beta2-agonist clenbuterol on expression of beta2-adrenoceptor mRNA in rat fast-twitch fiber-rich muscles.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Administration of the beta(2)-agonist clenbuterol has been shown to reduce the expression of beta(2)-adrenoceptor (AR) mRNA in fast-twitch fiber-rich (extensor digitorum longus, EDL) muscle without changing that in slow-twitch fiber-rich (soleus, SOL) muscle in rats. However, the regulatory mechanism for muscle fiber type-dependent down-regulation of the expression of beta(2)-AR mRNA induced by clenbuterol is still unclear. Therefore, mRNA expression of transcriptional and post-transcriptional regulatory factors for beta(2)-AR mRNA levels in fast-twitch fiber-rich (EDL and plantaris, PLA) and slow-twitch fiber-rich (SOL) muscles in clenbuterol-administered (1.0 mg/kg body weight/day for 10 days, subcutaneous) rats was studied by real-time reverse transcription-polymerase chain reaction. Administration of clenbuterol significantly reduced expression of beta(2)-AR mRNA in EDL and PLA muscles without changing that in SOL muscle. Administration of clenbuterol also significantly reduced the mRNA expression of transcriptional regulatory factor (glucocorticoid receptor) and mRNA stabilizing factor (Hu antigen R) in EDL and PLA muscles without changing those in SOL muscle. These results suggest that muscle fiber type-dependent effects of clenbuterol on expression of beta(2)-AR mRNA are closely related to the down-regulation of mRNA expression of transcriptional and post-transcriptional regulatory factors for beta(2)-AR mRNA levels.