uri icon
  • Contact Info
  • 1 979 862 1123
  • Websites

Rye, Hays Associate Professor


A fundamental principle of biology is the use of chemical energy in the form of ATP to assemble, disassemble and alter macromolecular structure. Specialized control proteins known as molecular chaperones are often responsible for this activity and have been recognized in recent years to be essential for regulating many aspects of cellular biology. Using a variety of biophysical and biochemical techniques, the Rye lab focuses on three fundamental cellular processes that require molecular chaperones: (1) protein folding (2) protein disaggregation and (3) vesicle trafficking. In each of these cases, large quantities ATP are burned, resulting in molecular organization in the case of protein folding, and molecular disassembly and remodeling in the case of protein disaggregation and vesicle trafficking. We are interested in understanding the detailed biophysical mechanisms that underpin these events. Why are these processes so energetically expensive? Are there any similarities in how the energy is used between these very different molecular processes? Are there general principles of energy transduction in biology that can be gleaned by comparing these examples with other molecular machines, such as cytoskeletal motors? Understanding how molecular chaperones control protein and membrane organization will provide key insights into not only basic cell biology, but will also illuminate aspects of many diseases that spring from aberrant protein and membrane dynamics.

HR job title

  • Associate Professor