Developmental and hormonal regulation of NR2A mRNA in forebrain regions controlling avian vocal learning Academic Article uri icon

abstract

  • Developmental changes in the composition of NMDA receptors can alter receptor physiology as well as intracellular signal transduction cascades, potentially shifting thresholds for neural and behavioral plasticity. During song learning in zebra finches, NMDAR currents become faster, and transcripts for the modulatory NR2B subunit of this receptor decrease in lMAN, a region in which NMDAR activation is critical for vocal learning. Using in situ hybridization, we found that NR2A transcripts change reciprocally, increasing significantly in both lMAN (59%) and in another song region, Area X (38%), between posthatch day (PHD) 20 and 40, but not changing further at PHD60 or 80. In adjacent areas not associated with song learning, NR2A mRNA did not change between PHD20-80. Although early song deprivation (which extends the sensitive period for song learning) delays changes in NR2B gene expression and NMDAR physiology within the lMAN, it did not alter NR2A mRNA levels measured at PHD40, 45, or 60. Early testosterone (T) treatment, which disrupts vocal development and accelerates the maturation of both NR2B levels and NMDAR physiology in lMAN, also significantly increased NR2A transcripts measured at PHD35 in lMAN. In Area X, a similar effect of T approached significance. Together with our previous studies, these results show that in a pathway critical for vocal plasticity, the ratio of NR2A:NR2B mRNA rises abruptly early during the sensitive period for song learning. Furthermore, androgen regulation of NMDAR gene expression may alter thresholds for experience-dependent synaptic change.

altmetric score

  • 3

author list (cited authors)

  • Heinrich, J. E., Singh, T. D., Sohrabji, F., Nordeen, K. W., & Nordeen, E. J.

citation count

  • 26

publication date

  • May 2002

publisher