Analysis of estrogen receptor alpha-Sp1 interactions in breast cancer cells by fluorescence resonance energy transfer. Academic Article uri icon


  • Estrogen-dependent regulation of several genes associated with cell cycle progression, proliferation, and nucleotide metabolism in breast cancer cells is associated with interactions of estrogen receptor (ER)alpha/Sp1 with GC-rich promoter elements. This study investigates ligand-dependent interactions of ERalpha and Sp1 in MCF-7 breast cancer cells using fluorescence resonance energy transfer (FRET). Chimeric ERalpha and Sp1 proteins fused to cyan fluorescent protein or yellow fluorescent protein were transfected into MCF-7 cells, and a FRET signal was induced after treatment with 17beta-estradiol, 4'-hydroxytamoxifen, or ICI 182,780. Induction of FRET by these ERalpha agonists/antagonists was paralleled by their activation of gene expression in cells transfected with a construct (pSp1(3)) containing three tandem Sp1 binding sites linked to a luciferase reporter gene. In contrast, interactions between ERalpha and Sp1DeltaDBD [a DNA binding domain (DBD) deletion mutant of Sp1] are not observed, and this is consistent with the critical role of the C-terminal DBD of Sp1 for interaction with ERalpha. Results of the FRET assay are consistent with in vitro studies on ERalpha/Sp1 interactions and transactivation, and confirm that ERalpha and Sp1 interact in living breast cancer cells.

published proceedings

  • Mol Endocrinol

author list (cited authors)

  • Kim, K., Barhoumi, R., Burghardt, R., & Safe, S.

citation count

  • 54

complete list of authors

  • Kim, Kyounghyun||Barhoumi, Rola||Burghardt, Robert||Safe, Stephen

publication date

  • April 2005