TURNING DYNAMICS PART 1: EXPERIMENTAL ANALYSIS Conference Paper uri icon

abstract

  • The workpiece and tool vibrations in a lathe are experimentally studied to establish improved understanding of cutting dynamics that would support efforts in exceeding the current limits of the turning process. A Keyence laser displacement sensor is employed to monitor the workpiece and tool vibrations during chatter-free and chatter cutting. A procedure is developed that utilizes instantaneous frequency (IF) to identify the modes related to measurement noise and those innate of the cutting process. Instantaneous frequency is shown to thoroughly characterize the underlying turning dynamics and identify the exact moment in time when chatter fully developed. That IF provides the needed resolution for identifying the onset of chatter suggests that the stability of the process should be monitored in the time-frequency domain to effectively detect and characterize machining instability. It is determined that for the cutting tests performed chatters of the workpiece and tool are associated with the changing of the spectral components and more specifically period-doubling bifurcation. The analysis presented provides a view of the underlying dynamics of the lathe process which has not been experimentally observed before.

name of conference

  • Volume 4: Dynamics, Control and Uncertainty, Parts A and B

published proceedings

  • INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 4, PTS A AND B

author list (cited authors)

  • Halfmann, E. B., Suh, C. S., & Hung, N. P.

citation count

  • 0

complete list of authors

  • Halfmann, Eric B||Suh, C Steve||Hung, NP

publication date

  • January 2013