Characteristic response of a production diesel oxidation catalyst exposed to lean and rich PCI exhaust Conference Paper uri icon

abstract

  • Although low-temperature premixed compression ignition (PCI) combustion in a light-duty diesel engine offers dramatic and simultaneous reductions in nitric oxides (NOx) and soot, associated increases in unburned hydrocarbons (HC) and carbon monoxide (CO) become unacceptable. Production diesel oxidation catalysts (DOCs) are effective in oxidizing the increased levels of HC and CO under lean combustion conditions. However, the low temperature / high CO combination under rich PCI conditions, designed as a lean NOx trap (LNT) regeneration mode, generally renders the DOC ineffective. The objectives of this study are to characterize the oxidizing efficiency of a production DOC under lean and rich PCI conditions, and attempt to identify probable causes for the observed ineffectiveness under rich PCI. The study uses several tests to characterize the behavior of the DOC under lean PCI and rich PCI combustion conditions, including: (1) steady-state feed gas characterization, (2) transient feed gas characterization, (3) air injection (4) insulated AF sweep, and (5) combustion mode switching. The DOC never becomes effective under rich PCI for any of the tests, suggesting that the platinum-based catalyst may be incorrect for use with rich PCI. Furthermore, combustion mode switching between lean PCI and rich PCI (mimicking LNT loading and regeneration) demonstrates diminishing effectiveness of the DOC during and after continuous mode transitioning.

name of conference

  • ASME 2007 Internal Combustion Engine Division Fall Technical Conference

published proceedings

  • PROCEEDINGS OF THE 2007 FALL TECHNICAL CONFERENCE OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION

author list (cited authors)

  • Jacobs, T. J., & Assanis, D. N.

citation count

  • 1

complete list of authors

  • Jacobs, Timothy J||Assanis, Dennis N

publication date

  • January 2008