Gulf War Illness: Mechanisms Underlying Brain Dysfunction and Promising Therapeutic Strategies. Academic Article uri icon


  • Gulf War Illness (GWI), a chronic multisymptom health problem, afflicts ~30% of veterans served in the first GW. Impaired brain function is among the most significant symptoms of GWI, which is typified by persistent cognitive and mood impairments, concentration problems, headaches, chronic fatigue, and musculoskeletal pain. This review aims to discuss findings from animal prototypes and veterans with GWI on mechanisms underlying its pathophysiology and emerging therapeutic strategies for alleviating brain dysfunction in GWI. Animal model studies have linked brain impairments to incessantly elevated oxidative stress, chronic inflammation, inhibitory interneuron loss, altered lipid metabolism and peroxisomes, mitochondrial dysfunction, modified expression of genes relevant to cognitive function, and waned hippocampal neurogenesis. Furthermore, the involvement of systemic alterations such as the increased intensity of reactive oxygen species and proinflammatory cytokines in the blood, transformed gut microbiome, and activation of the adaptive immune response have received consideration. Investigations in veterans have suggested that brain dysfunction in GWI is linked to chronic activation of the executive control network, impaired functional connectivity, altered blood flow, persistent inflammation, and changes in miRNA levels. Lack of protective alleles from Class II HLA genes, the altered concentration of phospholipid species and proinflammatory factors in the circulating blood have also been suggested as other aiding factors. While some drugs or combination therapies have shown promise for alleviating symptoms in clinical trials, larger double-blind, placebo-controlled trials are needed to validate such findings. Based on improvements seen in animal models of GWI, several antioxidants and anti-inflammatory compounds are currently being tested in clinical trials. However, reliable blood biomarkers that facilitate an appropriate screening of veterans for brain pathology need to be discovered. A liquid biopsy approach involving analysis of brain-derived extracellular vesicles in the blood appears efficient for discerning the extent of neuropathology both before and during clinical trials.

published proceedings

  • Pharmacol Ther

altmetric score

  • 9.75

author list (cited authors)

  • Dickey, B., Madhu, L. N., & Shetty, A. K.

citation count

  • 22

complete list of authors

  • Dickey, Brandon||Madhu, Leelavathi N||Shetty, Ashok K

publication date

  • January 2021