I am interested in understanding how behavioral states are regulated at the molecular and genetic level. My lab addresses this complex question in the well-studied nematode Caenorhabditis elegans. Several physical aspects of this worm make it convenient for integrating whole organism system biology studies with genetic/molecular analysis of neurobiology and behavior. C. elegans is an anatomically simple organism; it is 1mm in size, and it contains ~ 1000 somatic cells, a third of which are neurons. The worm is also transparent, and thus every cell can be visualized by light microscopy. Behavioral mutants can be efficiently generated through standard chemical mutagenesis. In addition, gene functions involved in motivational and behavioral regulation can be determined by transgenic techniques.
My lab investigates the interplay between feeding and sex-specific mating behavior to understand how chemo/mechano-sensory and motor outputs are controlled under various physiological conditions. We study male mating by using genetics to de-construct this behavior into its fundamental sensory-motor components. We then use a combination of transgenics, pharmacology, classical genetics and laser microsurgery to understand how individual motor sub-behaviors are coordinated to produce gross behaviors during periods when the animal is food deprived, and when it is food satiated.