Split manufacturing of integrated circuits (IC) is being investigated as a way to simultaneously alleviate the cost of owning a trusted foundry and eliminate the security risks associated with outsourcing IC fabrication. In split manufacturing, a design house (with a low-end, in-house, trusted foundry) fabricates the Front End Of Line (FEOL) layers (transistors and lower metal layers) in advanced technology nodes at an untrusted high-end foundry. The Back End Of Line (BEOL) layers (higher metal layers) are then fabricated at the design house's trusted low-end foundry. Split manufacturing is considered secure (prevents reverse engineering and IC piracy) as it hides the BEOL connections from an attacker in the FEOL foundry. We show that an attacker in the FEOL foundry can exploit the heuristics used in typical floorplanning, placement, and routing tools to bypass the security afforded by straightforward split manufacturing. We developed an attack where an attacker in the FEOL foundry can connect 96% of the missing BEOL connections correctly. To overcome this security vulnerability in split manufacturing, we developed a fault analysis-based defense. This defense improves the security of split manufacturing by deceiving the FEOL attacker into making wrong connections. 2013 EDAA.
name of conference
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013