Optimal Control of Gene Regulatory Networks with Unknown Cost Function
Conference Paper
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2018 AACC. Most of the existing methodologies for control of Gene Regulatory Networks (GRNs) assume that the immediate cost function at each state and time point is fully known. In this paper, we introduce an optimal control strategy for control of GRNs with unknown or partially-known immediate cost function. Toward this, we adopt a partially-observed Boolean dynamical system (POBDS) model for the GRN and propose an Inverse Reinforcement Learning (IRL) methodology for quantifying the imperfect behavior of experts, obtained via prior biological knowledge or experimental data. The constructed cost function then is used in finding the optimal infinite-horizon control strategy for the POBDS. The application of the proposed method using a single sequence of experimental data is investigated through numerical experiments using a melanoma gene regulatory network.