Combined visual and inertial navigation for an unmanned aerial vehicle
Conference Paper
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We describe an UAV navigation system which combines stereo visual odometry with inertial measurements from an IMU. Our approach fuses the motion estimates from both sensors in an extended Kalman filter to determine vehicle position and attitude. We present results using data from a robotic helicopter, in which the visual and inertial system produced a final position estimate within 1% of the measured GPS position, over a flight distance of more than 400 meters. Our results show that the combination of visual and inertial sensing reduced overall positioning error by nearly an order of magnitude compared to visual odometry alone. 2008 Springer-Verlag Berlin Heidelberg.