A Homotopic Galerkin Approach to the Solution of the FokkerPlanckKolmogorov Equation
Conference Paper

 Overview

 Identity

 Additional Document Info

 View All

Overview
abstract

In this paper, we present a homotopic Galerkin approach to the solution of the FokkerPlanckKolmogorov equation. We argue that the ideal Hilbert space to approximate the exact solution, ψ*, is the space L 2(dΨ*) where dΨ* is the probability measure induced on Rn by the solution ψ* itself. We show that given an initial approximation of the exact solution which is sufficiently close to the exact solution, we can obtain the exact solution iteratively by propagating the solution over sufficiently small time intervals using the Galerkin projection method. Further, we show that given a family of dynamical systems, Dp, indexed by the homotopy parameter p ∈ [0, 1], where the dynamical system corresponding to p = 0 is a system whose associated FokkerPlanck equation can be solved and p = 1 is the dynamical system of interest, and such that the associated solutions to the corresponding FokkerPlanck equations can be changed smoothly by slowly varying the homotopy parameter, the exact solution can be obtained recursively, using the Galerkin projection method, starting with the solution to the FokkerPlanck equation associated with the dynamical system D0. ©2006 IEEE.
author list (cited authors)
citation count
publication date
publisher
published in
Identity
Digital Object Identifier (DOI)
International Standard Book Number (ISBN) 10
International Standard Book Number (ISBN) 13
Additional Document Info
start page
end page
volume