A PERFORMANCE COMPARISON OF EMG CLASSIFICATION METHODS FOR HAND AND FINGER MOTION Conference Paper uri icon

abstract

  • For recognizing human motion intent, electromyogram (EMG) based pattern recognition approaches have been studied for many years. A number of methods for classifying EMG patterns have been introduced in the literature. On the purpose of selecting the best performing method for the practical application, this paper compares EMG pattern recognition methods in terms of motion type, feature extraction, dimension reduction, and classification algorithm. Also, for more usability of this research, hand and finger EMG motion data set which had been published online was used. Time-domain, empirical mode decomposition, discrete wavelet transform, and wavelet packet transform were adopted as the feature extraction. Three cases, such as no dimension reduction, principal component analysis (PCA), and linear discriminant analysis (LDA), were compared. Six classification algorithms were also compared: nave Bayes, k-nearest neighbor, quadratic discriminant analysis, support vector machine, multi-layer perceptron, and extreme machine learning. The performance of each case was estimated by three perspectives: classification accuracy, train time, and test (prediction) time. From the experimental results, the time-domain feature set and LDA were required for the highest classification accuracy. Fast train time and test time are dependent on the classification methods.

name of conference

  • Volume 2: Dynamic Modeling and Diagnostics in Biomedical Systems; Dynamics and Control of Wind Energy Systems; Vehicle Energy Management Optimization; Energy Storage, Optimization; Transportation and Grid Applications; Estimation and Identification Methods, Tracking, Detection, Alternative Propulsion Systems; Ground and Space Vehicle Dynamics; Intelligent Transportation Systems and Control; Energy Harvesting; Modeling and Control for Thermo-Fluid Applications, IC Engines, Manufacturing

published proceedings

  • 7TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2014, VOL 2

author list (cited authors)

  • Shin, S., Langari, R., & Tafreshi, R.

citation count

  • 13

complete list of authors

  • Shin, Sungtae||Langari, Reza||Tafreshi, Reza

publication date

  • October 2014