An exact jumper-insertion algorithm for antenna violation avoidance/fixing considering routing obstacles
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
We study in this paper the problem of jumper insertion on general routing (Steiner/spanning) trees with obstacles for antenna avoidance/fixing at the routing and/or postlayout stages. We formulate the jumper insertion for antenna avoidance/fixing as a tree-cutting problem and present the first optimal algorithm for the general tree-cutting problem. We show that the tree-cutting problem exhibits the properties of optimal substructures and greedy choices. With these properties, we present an O((V + D) lg D)-time optimal jumper-insertion algorithm that uses the least number of jumpers to avoid/fix the antenna violations on a Steiner/spanning tree with V vertices and D obstacles. Experimental results show the superior effectiveness and efficiency of our algorithm. 2007 IEEE.