Maximum-Likelihood Adaptive Filter for Partially Observed Boolean Dynamical Systems
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
1991-2012 IEEE. We present a framework for the simultaneous estimation of state and parameters of partially observed Boolean dynamical systems (POBDS). Simultaneous state and parameter estimation is achieved through the combined use of the Boolean Kalman filter and Boolean Kalman smoother, which provide the minimum mean-square error state estimators for the POBDS model, and maximum-likelihood (ML) parameter estimation; in the presence of continuous parameters, ML estimation is performed using the expectation-maximization algorithm. The performance of the proposed ML adaptive filter is demonstrated by numerical experiments with a POBDS model of gene regulatory networks observed through noisy next-generation sequencing (RNA-seq) time series data using the well-known p53-MDM2 negative-feedback loop gene regulatory model.