On the Predicted Effect of Angular Misalignment on the Performance of Oil Lubricated Thrust Collars in Integrally Geared Compressors Academic Article uri icon

abstract

  • Multiple-stage integrally geared compressors (IGCs) offer improved thermal efficiency and easier access for maintenance and overhaul than single-shaft centrifugal compressors. In an IGC, a main bull shaft drives pinion shafts, each having an impeller at its ends. The compression of process gas in the compressor stages induces axial loads along the pinion shafts that are transmitted via thrust collars (TCs) to the main bull gear (BG) shaft and balanced by a single thrust bearing. Manufacturing inaccuracies and a poor assembly process can lead to static angular misalignments of the TC and BG surfaces that affect the operating film thickness as well as the force and reaction moments of the lubricated mechanical element. In a follow-up to San Andrs et al. (2015, On the Predicted Performance of Oil Lubricated Thrust Collars in Integrally Geared Compressors, ASME J. Eng. Gas Turbines Power, 137(5), pp. 19), this paper presents an investigation of the performance of a single thrust collar configuration operating with increasing static angular misalignment of either the TC or BG. The flow model solves the Reynolds equation of hydrodynamic lubrication coupled to a thermal energy transport equation to determine the film pressure and bulk temperature fields, respectively. The model predicts performance parameters such as power loss and lubricant flow rate, and force and moment stiffness and damping coefficients. Predictions show that misaligning of either the thrust collar or bull gear alters the load-carrying area in the lubricated zone, shifts the pressure field with peak magnitudes doubling or more depending on the degree and direction of TC or BG misalignment. Static angular misalignment does not significantly affect the power loss, temperature rise, etc., but does have an effect on the dynamic coefficients (both axial and angular). Finally, a reduced complex dynamic stiffness matrix for the lubricated TC shows that some cross-coupled stiffness and moment coefficients are nonzero, indicating hydrodynamic coupling between axial and angular motions for the pinion and bull gear shafts. The coupling could affect the placement of the system natural frequencies and associated mode shapes as well as the system stability.

published proceedings

  • JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME

author list (cited authors)

  • Cable, T. A., San Andres, L., & Wygant, K.

citation count

  • 9

complete list of authors

  • Cable, Travis A||San Andres, Luis||Wygant, Karl

publication date

  • April 2017