Bhandare, Ruchika (2012-08). Building Information Modeling - A Minimum Mathematical Configuration. Master's Thesis. Thesis uri icon

abstract

  • In the current context, the standardization of building construction is not limited to a specific country or to a specific building code. Trade globalization has emphasized the need for standardization in the process of exchange of design information, whether it is in the form of drawings or documents. Building Information Modeling is the latest transformational technology that supports interactive development of design information for buildings. No single Building Information Modeling software package is used in the Architecture Engineering Construction and Facilities Management industries, which is strength as new ideas develop, but a hindrance as the new ideas flow at a different pace into the various programs. The standards divergence of various software results in a limited ability to exchange data between and within projects, especially one sees the difficulty in moving data from one program to another. The Document eXchange File format represents an early attempt to standardize the exchange of drawing information by Autodesk. However, the data was limited to geometric data required for the production of plotted drawings. Metadata in a Building Information Model provides a method to add information to the basic geometric configuration provided in a Document eXchange File. Building Information Model programs use data structures to define smart objects that encapsulate building data in a searchable and robust format. Due to the complexity of building designs eXtensible Markup Language schemas of three dimensional models are often large files that can contain considerable amounts of superfluous information. The aim of this research is to exclude all the superfluous information from the design information and determine the absolute minimum information required to execute the construction of a project. A plain concrete beam element was used as the case study for this research. The results show that a minimal information schema can be developed for a simple building element. Further research is required on more complex elements.
  • In the current context, the standardization of building construction is not limited to a specific country or to a specific building code. Trade globalization has emphasized the need for standardization in the process of exchange of design information, whether it is in the form of drawings or documents. Building Information Modeling is the latest transformational technology that supports interactive development of design information for buildings.

    No single Building Information Modeling software package is used in the Architecture Engineering Construction and Facilities Management industries, which is strength as new ideas develop, but a hindrance as the new ideas flow at a different pace into the various programs. The standards divergence of various software results in a limited ability to exchange data between and within projects, especially one sees the difficulty in moving data from one program to another. The Document eXchange File format represents an early attempt to standardize the exchange of drawing information by Autodesk. However, the data was limited to geometric data required for the production of plotted drawings.

    Metadata in a Building Information Model provides a method to add information to the basic geometric configuration provided in a Document eXchange File. Building Information Model programs use data structures to define smart objects that encapsulate building data in a searchable and robust format. Due to the complexity of building designs eXtensible Markup Language schemas of three dimensional models are often large files that can contain considerable amounts of superfluous information.

    The aim of this research is to exclude all the superfluous information from the design information and determine the absolute minimum information required to execute the construction of a project. A plain concrete beam element was used as the case study for this research. The results show that a minimal information schema can be developed for a simple building element. Further research is required on more complex elements.

publication date

  • August 2012