Orai1 Function Is Essential for T Cell Homing to Lymph Nodes Academic Article uri icon

abstract

  • In T lymphocytes, Ca(2+) release-activated Ca(2+) (CRAC) channels composed of Orai1 subunits trigger Ag-induced gene expression and cell proliferation through the NFAT pathway. We evaluated the requirement of CRAC channel function for lymphocyte homing using expression of a dominant-negative Orai1-E106A mutant to suppress Ca(2+) signaling. To investigate homing and motility of human lymphocytes in immunocompromised mouse hosts, we transferred human lymphocytes either acutely or after stable engraftment after a second transfer from the same blood donor. Human and mouse lymphocyte homing was assessed, and cells were tracked within lymph nodes (LNs) by two-photon microscopy. Our results demonstrate that human T and B lymphocytes home into and migrate within the LNs of immunocompromised NOD.SCID mice similar to murine lymphocytes. Human T and B cells colocalized in atrophied or reconstituted mouse LNs, where T cells migrated in a random walk at velocities of 9-13 μm/min and B cells at 6 μm/min. Expression of Orai1-E106A inhibited CRAC channel function in human and mouse T cells, and prevented homing from high endothelial venules into murine LNs. Ca(2+) signals induced by CCL21 were also inhibited in T cells expressing Orai1-E106A. With CRAC channels inhibited, the high-affinity form of LFA-1 failed to become active, and T cells failed to migrate across endothelial cells in a transwell model. These results establish a requirement for CRAC channel-mediated Ca(2+) influx for T cell homing to LNs mediated by high-affinity integrin activation and chemokine-induced transendothelial migration.

altmetric score

  • 0.25

author list (cited authors)

  • Greenberg, M. L., Yu, Y., Leverrier, S., Zhang, S. L., Parker, I., & Cahalan, M. D.

citation count

  • 20

publication date

  • April 2013