Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome. Academic Article uri icon

abstract

  • During macronuclear development the Tetrahymena thermophila ribosomal RNA gene is excised from micronuclear chromosome 1 by site-specific cleavage at chromosome breakage sequence (Cbs) elements, rearranged into a 'palindromic' 21 kb minichromosome and extensively amplified. Gene amplification initiates from origins in the 5' non-transcribed spacer, and forks moving toward the center of the palindrome arrest at a developmentally regulated replication fork barrier (RFB). The RFB is inactive during vegetative cell divisions, suggesting a role in the formation or amplification of macronuclear rDNA. Using micronuclear (germline) transformation, we show that the RFB region facilitates Cbs-mediated excision. Deletion of the RFB inhibits chromosome breakage in a sub-population of developing macronuclei and promotes alternative processing by a Cbs-independent mechanism. Remarkably, the RFB region prevents spontaneous breakage of chromosome 1 in the diploid micronucleus. Strains heterozygous for DeltaRFB and wild-type rDNA lose the DeltaRFB allele and distal left arm of chromosome 1 during vegetative propagation. The wild-type chromosome is subsequently fragmented near the rDNA locus, and both homologs are progressively eroded, suggesting that broken micronuclear chromosomes are not 'healed' by telomerase. Deletion of this 363 bp segment effectively creates a fragile site in the micronuclear genome, providing the first evidence for a non-telomere cis-acting determinant that functions to maintain the structural integrity of a mitotic eukaryotic chromosome.

published proceedings

  • Nucleic Acids Res

author list (cited authors)

  • Yakisich, J. S., & Kapler, G. M.

citation count

  • 6

complete list of authors

  • Yakisich, JS||Kapler, GM

publication date

  • January 2006