Stretch-induced increases in intracellular calcium of isolated vascular smooth muscle cells.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Vascular smooth muscle responds to stretch with an increase in active force development. To investigate the role of Ca2+ in this response, we used the fluorescent dye fura-2 to quantitate changes in cytosolic Ca2+ in single, vascular smooth muscle cells during rapid stretch. Cells were enzymatically dispersed from pig coronary arteries, loaded with fura-2/AM, and studied using a digital-imaging microscope. Stretch of individual cells was accomplished by attachment with suction to two patch-type micropipettes to apply force to the ends of the cell. Stretch induced the release of Ca2+ from intracellular stores as well Ca2+ influx across the plasma membrane. In physiological saline solution containing 1.5 mM Ca2+, intracellular calcium increased with cell stretch in a sigmoidal fashion. This relationship was shifted upward in 10 mM Ca2+ bath solution and abolished after several minutes in Ca(2+)-free solution. The dihydropyridine Ca2+ channel blocker nifedipine, in doses sufficient to completely block inward Ca2+ current, produced only a partial block of the sustained stretch-induced intracellular Ca2+ response. It is concluded that in isolated pig coronary arterial smooth muscle cells, stretch-induced Ca2+ influx occurs in part via a nifedipine-resistant pathway, which may be a stretch-activated cation channel.