Estrogen's effects on central and circulating immune cells vary with reproductive age. Academic Article uri icon

abstract

  • Previous work from this lab has shown that estrogen attenuates inflammatory cytokine production following brain lesions in young adult female rats, but not in older, reproductive senescent females. The present study was designed to elucidate whether these effects result from estrogen's actions on brain-resident immune cells (microglia) or on circulating immune cells recruited to the brain from blood. Microglia, harvested from the olfactory bulbs of ovariectomized young adult and reproductive senescent animals, were pretreated with 17beta-estradiol and subsequently with the bacterial endotoxin LPS. LPS treatment significantly increased the pro-inflammatory cytokine IL-1beta in microglial cultures harvested from young and senescent females, but estrogen treatment had no effect on cytokine expression in either group. In young adult-derived microglia, LPS treatment also increased nitric oxide (NO), which was attenuated by estrogen, and MMP-9, which was not affected by estrogen. Reproductive senescent-derived microglia cultures had higher basal expression of NO and MMP-9 activity as compared to those from young adult microglial cultures, although LPS did not further stimulate these inflammatory markers. In blood cultures, LPS stimulated a dose-dependent increase in the inflammatory cytokine TNF-alpha expression in both young adult and reproductive senescent animals. Estrogen replacement significantly attenuated TNF-alpha induction by LPS in blood cultures derived from young adult females. Paradoxically, estrogen replacement increased LPS-induced TNF-alpha expression in blood cultures derived from reproductive senescent animals as compared to age-matched controls. The age and estrogen dependent effects on circulating immune cells found in whole blood cultures closely mimic the effects of estrogen on cytokine expression in the young and senescent animals that we reported in vivo, supporting the hypothesis that the immunosuppressive actions of estrogen replacement on neural injury may result from hormone-action on circulating immune cells.

published proceedings

  • Neurobiol Aging

author list (cited authors)

  • Johnson, A. B., & Sohrabji, F

citation count

  • 42

complete list of authors

  • Johnson, Adam B||Sohrabji, Farida

publication date

  • February 2005