Ca2+ sensitization of cardiac myofilament proteins contributes to exercise training-enhanced myocardial function in a porcine model of chronic occlusion Academic Article uri icon

abstract

  • Exercise training has been shown to improve cardiac dysfunction in both patients and animal models of coronary artery disease; however, the underlying cellular and molecular mechanisms have not been completely understood. We hypothesized that exercise training would improve force generation in the myocardium distal to chronic coronary artery occlusion via altered intracellular Ca(2+) concentration ([Ca(2+)](i)) cycling and/or Ca(2+) sensitization of myofilaments. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of adult female Yucatan pigs. Twenty-two weeks postoperatively, the myocardium was isolated from nonoccluded (left anterior descending artery dependent) and collateral-dependent (formerly left circumflex coronary artery dependent) regions of sedentary (pen confined) and exercise-trained (treadmill run, 5 days/wk for 14 wk) pigs. Force measurements in myocardial strips showed that the percent change in force at stimulation frequencies of 3 and 4 Hz relative to 1 Hz was significantly higher in exercise-trained pigs compared with sedentary pigs. β-Adrenergic stimulation with dobutamine significantly improved force kinetics in myocardial strips of sedentary but not exercise-trained pigs at 1 Hz. Additionally, time to peak and half-decay of intracellular Ca(2+) (340-to-380-nm fluoresence ratio) responses at 1 Hz were significantly decreased in the collateral-dependent region of exercise-trained pigs with no difference in peak [Ca(2+)](i) between groups. Furthermore, the skinned myocardium from exercise-trained pigs showed an increase in Ca(2+) sensitivity compared with sedentary pigs. Immunoblot analysis revealed that the relative levels of cardiac troponin T and β(1)-adrenergic receptors were decreased in hearts from exercise-trained pigs independent of occlusion. Also, the ratio of phosphorylated to total myosin light chain-2, basal phosphorylation levels of cardiac troponin I (Ser(23) and Ser(24)), and cardiac myosin binding protein-C (Ser(282)) were unaltered by occlusion or exercise training. Thus, our data demonstrate that exercise training-enhanced force generation in the nonoccluded and collateral-dependent myocardium was associated with improved Ca(2+) transients, increased Ca(2+) sensitization of myofilament proteins, and decreased expression levels of β(1)-adrenergic receptors and cardiac troponin T.

author list (cited authors)

  • Sarin, V., Muthuchamy, M., & Heaps, C. L.

citation count

  • 5

publication date

  • August 2011