Assessment of compression-induced solid stress, fluid pressure and mechanopathological parameters in cancersin vivousing poroelastography. Academic Article uri icon

abstract

  • Objective.Compression-induced solid stress (SSc) and fluid pressure (FPc) during ultrasound poroelastography (USPE) experiments are correlated with two markers of cancer growth and treatment effectiveness: growth-induced solid stress (SSg) and interstitial fluid pressure (IFP). The spatio-temporal distributions of SSg and IFP are determined by the transport properties of the vessels and interstitium in the tumor microenvironment.Approach.We propose a new USPE method for the non-invasive imaging of the local cancer mechanical parameters and dynamics of fluid flow. When performing poroelastography experiments, it may be difficult to implement a typical creep compression protocol, which requires to maintain a constant normally applied force. In this paper, we investigate the use of a stress relaxation protocol, which might be a more convenient choice for clinical poroelastography applications.Main results.Based on our finite element and ultrasound simulations study, we demonstrate that the SSc, FPc and their spatio-temporal distribution related parameters, interstitial permeability and vascular permeability, can be determined from stress relaxation experiments with errors below 10% as compared to the ground truth and accuracy similar to that of corresponding creep tests, respectively. We also demonstrate the feasibility of the new methodology forin vivoexperiments using a small animal cancer model.Significance.The proposed non-invasive USPE imaging methods may become an effective tool to assess local tumor pressure and mechanopathological parameters in cancers.

published proceedings

  • Phys Med Biol

author list (cited authors)

  • Khan, M., Islam, M. T., Taraballi, F., & Righetti, R.

complete list of authors

  • Khan, Md Hadiur Rahman||Islam, Md Tauhidul||Taraballi, Francesca||Righetti, Raffaella

publication date

  • June 2023