Variation in woody plant delta(13)C along a topoedaphic gradient in a subtropical savanna parkland. Academic Article uri icon

abstract

  • delta(13)C values of C(3) plants are indicators of plant carbon-water relations that integrate plant responses to environmental conditions. However, few studies have quantified spatial variation in plant delta(13)C at the landscape scale. We determined variation in leaf delta(13)C, leaf nitrogen per leaf area (N(area)), and specific leaf area (SLA) in April and August 2005 for all individuals of three common woody species within a 308 x 12-m belt transect spanning an upland-lowland topoedaphic gradient in a subtropical savanna in southern Texas. Clay content, available soil moisture, and soil total N were all negatively correlated with elevation. The delta(13)C values of Prosopis glandulosa (deciduous N(2)-fixing tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) leaves increased 1-4 per thousand with decreasing elevation, with the delta(13)C value of P. glandulosa leaves being 1-3 per thousand higher than those of the two shrub species. Contrary to theory and results from previous studies, delta(13)C values were highest where soil water was most available, suggesting that some other variable was overriding or interacting with water availability. Leaf N(area) was positively correlated with leaf delta(13)C of all species (p < 0.01) and appeared to exert the strongest control over delta(13)C along this topoedaphic gradient. Since leaf N(area) is positively related to photosynthetic capacity, plants with high leaf N(area) are likely to have low p (I)/p (a) ratios and therefore higher delta(13)C values, assuming stomatal conductance is constant. Specific leaf area was not correlated significantly with leaf delta(13)C. Following a progressive growing season drought in July/August, leaf delta(13)C decreased. The lower delta(13)C in August may reflect the accumulation of (13)C-depleted epicuticular leaf wax. We suggest control of leaf delta(13)C along this topoedaphic gradient is mediated by leaf N(area) rather than by stomatal conductance limitations associated with water availability.

published proceedings

  • Oecologia

author list (cited authors)

  • Bai, E., Boutton, T. W., Liu, F., Wu, X. B., & Archer, S. R

citation count

  • 29

complete list of authors

  • Bai, Edith||Boutton, Thomas W||Liu, Feng||Wu, X Ben||Archer, Steven R

publication date

  • March 2008