A dynamical systems approach based on averaging to model the macroscopic flow of freeway traffic Academic Article uri icon

abstract

  • The flow of traffic exhibits distinct characteristics under different conditions, reflecting the congestion during peak hours and relatively free motion during off-peak hours. This requires one to use different mathematical equations to describe the diverse traffic characteristics. Thus, the flow of traffic is best described by a hybrid system, namely different governing equations for the different regimes of response, and it is such a hybrid approach that is investigated in this paper. Existing models for the flow of traffic treat traffic as a continuum or employ techniques similar to those used in the kinetic theory of gases, neither of these approaches gainfully exploit the hybrid nature of the problem. Spurious two-way propagation of disturbances that are physically unacceptable are predicted by continuum models for the flow of traffic. The number of vehicles in a typical section of the highway does not justify its being modeled as a continuum. It is also important to recognize that the basic premises of kinetic theory are not appropriate for the flow of traffic (see [S. Darbha, K.R. Rajagopal, Limit of a collection of dynamical systems: an application to modeling the flow of traffic, Mathematical Models and Methods in Applied Sciences 12 (10) (2002) 1381-1399] for a rationale for the same). A model for the flow of traffic that does not treat traffic as a continuum or use notions from kinetic theory is developed here and corroborated with real-time data collected on US 183 in Austin, Texas. Predictions based on the hybrid system model seem to agree reasonably well with the data collected on US 183. © 2008.

author list (cited authors)

  • Tyagi, V., Darbha, S., & Rajagopal, K. R.

citation count

  • 16

publication date

  • June 2008