A dynamical systems approach based on averaging to model the macroscopic flow of freeway traffic Academic Article uri icon


  • The flow of traffic exhibits distinct characteristics under different conditions, reflecting the congestion during peak hours and relatively free motion during off-peak hours. This requires one to use different mathematical equations to describe the diverse traffic characteristics. Thus, the flow of traffic is best described by a hybrid system, namely different governing equations for the different regimes of response, and it is such a hybrid approach that is investigated in this paper. Existing models for the flow of traffic treat traffic as a continuum or employ techniques similar to those used in the kinetic theory of gases, neither of these approaches gainfully exploit the hybrid nature of the problem. Spurious two-way propagation of disturbances that are physically unacceptable are predicted by continuum models for the flow of traffic. The number of vehicles in a typical section of the highway does not justify its being modeled as a continuum. It is also important to recognize that the basic premises of kinetic theory are not appropriate for the flow of traffic (see [S. Darbha, K.R. Rajagopal, Limit of a collection of dynamical systems: an application to modeling the flow of traffic, Mathematical Models and Methods in Applied Sciences 12 (10) (2002) 1381-1399] for a rationale for the same). A model for the flow of traffic that does not treat traffic as a continuum or use notions from kinetic theory is developed here and corroborated with real-time data collected on US 183 in Austin, Texas. Predictions based on the hybrid system model seem to agree reasonably well with the data collected on US 183. 2008.

published proceedings


author list (cited authors)

  • Tyagi, V., Darbha, S., & Rajagopal, K. R.

citation count

  • 17

complete list of authors

  • Tyagi, Vipin||Darbha, Swaroop||Rajagopal, KR

publication date

  • June 2008