Inhibitory Effects of Extracellular Vesicles from iPS-Cell-Derived Mesenchymal Stem Cells on the Onset of Sialadenitis in Sjgren's Syndrome Are Mediated by Immunomodulatory Splenocytes and Improved by Inhibiting miR-125b. Academic Article uri icon


  • Extracellular vesicles (EVs) from allogeneic-tissue-derived mesenchymal stem cells (MSCs) are promising to improve Sjgren's syndrome (SS) treatment, but their application is hindered by high variations in and limited expandability of tissue MSCs. We derived standardized and scalable MSCs from iPS cells (iMSCs) and reported that EVs from young but not aging iMSCs (iEVs) inhibited sialadenitis onset in SS mouse models. Here, we aim to determine cellular mechanisms and optimization approaches of SS-inhibitory effects of iEVs. In NOD.B10.H2b mice at the pre-disease stage of SS, we examined the biodistribution and recipient cells of iEVs with imaging, flow cytometry, and qRT-PCR. Intravenously infused iEVs accumulated in the spleen but not salivary glands or cervical lymph nodes and were mainly taken up by macrophages. In the spleen, young but not aging iEVs increased M2 macrophages, decreased Th17 cells, and changed expression of related immunomodulatory molecules. Loading miR-125b inhibitors into aging iEVs significantly improved their effects on repressing sialadenitis onset and regulating immunomodulatory splenocytes. These data indicated that young but not aging iEVs suppress SS onset by regulating immunomodulatory splenocytes, and inhibiting miR-125b in aging iEVs restores such effects, which is promising to maximize production of effective iEVs from highly expanded iMSCs for future clinical application.

published proceedings

  • Int J Mol Sci

author list (cited authors)

  • Zhao, Q., Bae, E., Zhang, Y. u., Shahsavari, A., Lotey, P., Lee, R. H., & Liu, F.

citation count

  • 0

complete list of authors

  • Zhao, Qingguo||Bae, Eun-Hye||Zhang, Yu||Shahsavari, Arash||Lotey, Pranayvir||Lee, Ryang Hwa||Liu, Fei

publication date

  • March 2023