Micromachining of Advanced Materials Chapter uri icon

abstract

  • Market needs often require miniaturized products for portability, size/weight reduction while increasing product capacity. Utilizing additive manufacturing to achieve a complex and functional metallic part has attracted considerable interests in both industry and academia. However, the resulted rough surfaces and low tolerances of as-printed parts require additional steps for microstructure modification, physical and mechanical properties enhancement, and improvement of dimensional/form/surface to meet engineering specifications. Micromachining can (i) produce miniature components or microfeatures on a larger component, and (ii) enhance the quality of additively manufactured metallic components. This chapter suggests the necessary requirements for successful micromachining and cites the research studies on micromachining of metallic materials fabricated by either traditional route or additive technique. Micromachining by nontraditional techniquese.g., ion/electron beam machiningare beyond the scope of this chapter. The chapter is organized as following: Section 1: Introduction; Section 2: Requirement for successful micromachining: cutting tools, tool coating, machine tools, tool offset measuring methods, minimum quantity lubrication, and size effect; Section 3: Effect of materials: material defects, ductile regime machining, crystalline orientation, residual stress, and microstructure; Section 4: Micromachining: research works from literature, process monitoring, and process parameters; Section 4.1: Micromilling; Section 4.2: Microdrilling; Section 4.3: Ultraprecision turning; Section 5: Summary; and References.

author list (cited authors)

  • N.P. Hung, W., & Corliss, M.

citation count

  • 2

complete list of authors

  • N.P. Hung, Wayne||Corliss, Mike

editor list (cited editors)

  • Stanimirovic, Z., & Stanimirovic, I.

Book Title

  • Micromachining

publication date

  • November 2019