Cross Validation of Stress Drop Estimates and Interpretations for the 2011 Prague, OK, Earthquake Sequence Using Multiple Methods Academic Article uri icon

abstract

  • AbstractWe compare source parameter estimates for earthquakes in the 2011 Prague Mw 5.7, Oklahoma, sequence to investigate random uncertainty and systematic bias, and resolve reliable relative variations in stress drop. Source parameters provide insight into the earthquake rupture processes but large variations between studies occur. The Prague earthquake sequence is a prime example of this, with different studies reaching contrasting interpretations of the effects of injection on source parameters. We examine the Prague earthquake sequence using a single coherent catalog for all the events detected by the Oklahoma Geological Survey (OGS) and McMahon etal.(2017). We use three principal approaches to estimate stress drop in order to understand the biases of each: a spectral decomposition method based on stacking, individual event spectral modeling, and a spectral ratio method based on highly correlated events. We also compare our results with previous studies for the Prague sequences aftershocks, as well as past results for the Mw 4.8 foreshock and Mw 4.8 aftershock and Mw 5.7 mainshock. The absolute values of stress drop vary significantly between methods, but the relative patterns remain consistent, except when low quality or low bandwidth data are included. The consistent relative patterns reveal that the stress drops of aftershocks are dependent on the fault orientation and the proximity of the events to the mainshocks slip. These results indicate that fault structure as well as past events play an important role in stress drop patterns.

published proceedings

  • JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH

author list (cited authors)

  • Pennington, C. N., Chen, X., Abercrombie, R. E., & Wu, Q.

citation count

  • 17

publication date

  • March 2021