Development and Testing of an Automated Building Commissioning Analysis Tool (ABCAT) Conference Paper uri icon

abstract

  • Experience has shown that buildings on average may consume 20% more energy than required for occupant comfort which by one estimate leads to $18 billion wasted annually on energy costs in commercial buildings in the United States. Experience and large scale studies of the benefits of commissioning have shown the effectiveness of these services in improving the energy efficiency of commercial buildings. While commissioning services do help reduce energy consumption and improve performance of buildings, the benefits of the commissioning tend to degrade over time. In order to prolong the benefits of commissioning, a prototype fault detection and diagnostic (FDD) tool intended to aid in reducing excess energy consumption known as an Automated Building Commissioning Analysis Tool (ABCAT) has been developed. ABCAT is a first principles based whole building level top down FDD tool which does not require the level of expertise and money often associated with more detailed component level methods. The model based ABCAT tool uses the ASHRAE Simplified Energy Analysis Procedure (SEAP) which requires a smaller number of inputs than more sophisticated simulation methods such as EnergyPlus or DOE-2. ABCAT utilizes a calibrated mathematical model, white box method, to predict energy consumption for given weather conditions. A detailed description of the methodology is presented along with test application results from more than 20 building years worth of retrospective applications and greater than five building years worth of live test case applications. In this testing, the ABCAT tool was used to successfully identify 24 significant energy consumption deviations in five retrospective applications and five significant energy consumption deviations in four live applications. © 2010 by ASME.

author list (cited authors)

  • Bynum, J. D., Claridge, D. E., & Curtin, J. M.

citation count

  • 2

publication date

  • January 2010

publisher