Heat Transfer in Trailing Edge, Wedge-Shaped Cooling Channels Under High Rotation Numbers Conference Paper uri icon

abstract

  • Heat transfer coefficients are experimentally measured in a rotating cooling channel used to model an internal cooling passage near the trailing edge of a gas turbine blade. The regionally averaged heat transfer coefficients are measured in a wedge-shaped cooling channel (Dh = 2.22cm, Ac = 7.62cm2). The Reynolds number of the coolant varies from 10,000 to 40,000. By varying the rotational speed of the channel, the rotation number and buoyancy parameter range from 0–1.0 and 0–3.5, respectively. Significant variation of the heat transfer coefficients in both the spanwise and streamwise directions is apparent. Spanwise variation is the results of the wedge-shaped design, and streamwise variation is the result of the sharp entrance into the channel and the 180° at the outlet of the channel. With the channel rotating at 135° with respect to the direction of rotation, the heat transfer coefficients are enhanced on every surface of the channel. Both the non-dimensional rotation number and buoyancy parameter have proven to be excellent parameters to quantify the effect of rotation over the extended ranges achieved in this study.

name of conference

  • ASME Turbo Expo 2007: Power for Land, Sea, and Air

published proceedings

  • Volume 4: Turbo Expo 2007, Parts A and B

author list (cited authors)

  • Wright, L. M., Liu, Y., Han, J., & Chopra, S.

citation count

  • 9

complete list of authors

  • Wright, Lesley M||Liu, Yao-Hsien||Han, Je-Chin||Chopra, Sanjay

publication date

  • January 2007

publisher