A Recurring Chemogenetic Switch for Chimeric Antigen Receptor T Cells Institutional Repository Document uri icon

abstract

  • AbstractAs a revolutionary cancer treatment, the chimeric antigen receptor (CAR) T cell therapy suffers from complications such as cytokine release syndromes and T cell exhaustion. Their mitigation desires controllable activation of CAR-T cells that is achievable through regulatory display of CARs on the T cell surface. By embedding the hepatitis C virus NS3 protease (HCV-NS3) in an anti-CD19 CAR between the anti-CD19 single-chain variable fragment (scFv) and the hinge domain, we showed that the display of anti-CD19 scFv on CAR-T cells was positively correlated to the presence of a clinical HCV-NS3 inhibitor asunaprevir (ASV). This novel CAR design that allows the display of anti- CD19 scFv on the T cell surface in the presence of ASV and its removal in the absence of ASV effectuates a practically recurring chemical switch for CAR-T cells. We demonstrated that the intact CAR on T cells was repeatedly turn on and off by controlling the presence of ASV. The dose dependent manner of the intact CAR display on T cells with regard to the ASV concentration enables delicate modulation of CAR-T cell activation during cancer treatment. In a mouse model, we showed different treatment prospects when ASV was provided at different doses to mice that were infused with both human CD19+ lymphoma and the switchable CAR-T cells.

altmetric score

  • 0.5

author list (cited authors)

  • Cao, W., Geng, Z. Z., Wang, N. a., Pan, Q., Guo, S., Xu, S., Zhou, J., & Liu, W. R.

citation count

  • 0

complete list of authors

  • Cao, Wenyue||Geng, Zhi Z||Wang, Na||Pan, Quan||Guo, Shaodong||Xu, Shiqing||Zhou, Jianfeng||Liu, Wenshe Ray

Book Title

  • bioRxiv

publication date

  • August 2021