Effect of Unsteady Wake on Film-Cooling Effectiveness Distribution on a Gas Turbine Blade With Compound Shaped Holes Conference Paper uri icon

abstract

  • The effect of fan-shaped, laid-back compound angled cooling holes placed along the span of a fully-cooled high pressure turbine blade in a 5-blade linear cascade on film cooling effectiveness is studied using the Pressure Sensitive Paint (PSP) technique. Four rows of shaped film cooling holes are provided on the pressure side while two such rows are provided on the suction side of the blade. Three rows of cylindrical holes are drilled at 30° to the surface on the leading edge to capture the effect of showerhead film coolant injection. The coolant is injected at four different average blowing ratios of 0.3, 0.6, 0.9 and 1.2. Presence of wake due to upstream vanes is studied by placing a periodic set of rods upstream of the test blade. The wake is generated using 4.8mm diameter rods. The wake rods can be clocked by changing their stationary positions in front of the test blade to simulate a progressing wake. Effect of wake is recorded at four phase locations with equal intervals. The free stream Reynolds number, based on the axial chord length and the exit velocity, is 750,000 and the inlet and the exit Mach numbers are 0.27 and 0.44, respectively resulting in a blade pressure ratio of 1.14. Turbulence intensity level at the cascade inlet is 6% with an integral length scale of around 5cm. Results show that the fan-shaped, laid-back compound angled holes produce uniform and wide coolant coverage on the suction side except for those regions affected by the passage and tip leakage vortices. The advantage of compound shaped hole design is seen from the higher effectiveness values on the suction side compared to that of the compound cylindrical holes. The presence of a stationary upstream wake can result in lower film cooling effectiveness on the blade surface. Variation of blowing ratio from 0.3 to 1.2 show more or less uniform increment in effectiveness increase on the pressure side, whereas on the suction side, the increment shows signs of saturation beyond M = 0.6.

author list (cited authors)

  • Narzary, D. P., Gao, Z., Mhetras, S., & Han, J.

complete list of authors

  • Narzary, Diganta P||Gao, Zhihong||Mhetras, Shantanu||Han, Je-Chin

publication date

  • January 1, 2007 11:11 AM

publisher