Influence of Coolant Density on Turbine Blade Film-Cooling Using Pressure Sensitive Paint Technique Conference Paper uri icon

abstract

  • Adiabatic film-cooling effectiveness is examined on a high pressure turbine blade by varying three critical engine parameters, viz., coolant blowing ratio, coolant-to-mainstream density ratio and freestream turbulence intensity. Three average coolant blowing ratios (BR = 1.2, 1.7, and 2.2 on the pressure side and BR = 1.1, 1.4, and 1.8 on the suction side), three average coolant density ratios (DR = 1.0, 1.5, and 2.5), and two average freestream turbulence intensities (Tu = 4.2% and 10.5%) are considered. Conduction-free Pressure Sensitive Paint (PSP) technique is adopted to measure film-cooling effectiveness. Three foreign gases N2 for low density, CO2 for medium density, and a mixture of SF6 and Argon for high density are selected to study the effect of coolant density. The test blade features 2 rows of cylindrical film-cooling holes on the suction side (45 compound), 4 rows on the pressure side (45 compound) and 3 around the leading edge (30 radial). The inlet and the exit Mach numbers are 0.24 and 0.44, respectively. Reynolds number of the mainstream flow is 7.5E105 based on the exit velocity and blade chord length. Results suggest that the PSP is a powerful technique capable of producing clear and detailed film effectiveness contours with diverse foreign gases. Large improvement on the pressure side and moderate improvement on the suction side effectiveness is witnessed when blowing ratio is raised from 1.2 to 1.7 and 1.1 to 1.4, respectively. No major improvement is seen thereafter with the downstream half of the suction side showing drop in effectiveness. The effect of increasing coolant density is to increase effectiveness everywhere on the pressure surface and suction surface except for the small region on the suction side, xss/Cx>0.2. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of the suction side where significant improvement in effectiveness is seen.

name of conference

  • Volume 4: Heat Transfer, Parts A and B

published proceedings

  • Volume 4: Heat Transfer, Parts A and B

author list (cited authors)

  • Narzary, D. P., Liu, K., Rallabandi, A. P., & Han, J.

citation count

  • 5

complete list of authors

  • Narzary, Diganta P||Liu, Kuo-Chun||Rallabandi, Akhilesh P||Han, Je-Chin

publication date

  • January 2010