Film Cooling With Forward and Backward Injection for Cylindrical and Fan-Shaped Holes Using PSP Measurement Technique Conference Paper uri icon


  • A systematic study was performed to investigate the combined effects of hole geometry, blowing ratio, density ratio and free-stream turbulence intensity on flat plate film cooling with forward and backward injection. Detailed film cooling effectiveness distributions were obtained using the steady state pressure sensitive paint (PSP) technique. Four common film-hole geometries with forward injection were used in this study: simple angled cylindrical holes and fan-shaped holes, and compound angled (β = 45°) cylindrical holes and fan-shaped holes. Additional four film-hole geometries with backward injection were tested by reversing the injection direction from forward to backward to the mainstream. There are seven holes in a row on each plate and each hole is 4 mm in diameter. The hole length to diameter ratio is 7.5. The blowing ratio effect was studied at 10 different blowing ratios ranging from M = 0.3 to M = 2.0. The coolant to main stream density ratio (DR) effect was studied by using foreign gases with DR = 1 (N2), 1.5 (CO2), and 2 (15% SF6 + 85% Ar). The free stream turbulence intensity effect was tested at 0.5% and 6%. The results show higher density coolant provides higher effectiveness than lower density coolant, fan-shaped holes perform better than cylindrical holes, and compound angled holes are better than simple angled holes. In general, the results show the film cooling effectiveness with backward injection is greatly reduced for shaped holes as compared with the forward injection. However, significant improvements can be seen in both simple angled and compound angled cylindrical holes at higher blowing ratios and density ratio (DR = 2). Comparison was made between experimental data and empirical correlations for simple angled fan-shaped holes at engine representative density ratios. An improved correlation which covers a wider range of density ratios (DR = 1.0 to DR = 2.0) is proposed.

author list (cited authors)

  • Chen, A. F., Li, S., & Han, J.

complete list of authors

  • Chen, Andrew F||Li, Shiou-Jiuan||Han, Je-Chin

publication date

  • January 1, 2014 11:11 AM