Sequential activation of p38 and ERK pathways by cGMP-dependent protein kinase leading to activation of the platelet integrin alphaIIb beta3. uri icon

abstract

  • Integrin activation (inside-out signaling) in platelets can be initiated by agonists such as von Willebrand factor (VWF) and thrombin. Here we show that a mitogen-activated protein kinase (MAPK), p38, plays an important role in the activation of integrin alphaIIb beta3 induced by VWF and thrombin. A dominant-negative mutant of p38, p38AF, inhibits alphaIIb beta3 activation induced by VWF binding to its receptor, the platelet glycoprotein Ib-IX (GPIb-IX), and p38 inhibitors diminish platelet aggregation induced by VWF or low-dose thrombin. The inhibitory effect of p38 inhibitor is unlikely to be caused by the previous suggested effect on cyclo-oxygenase, as inhibition also was observed in the presence of high concentrations of cyclo-oxygenase inhibitor, aspirin. VWF or thrombin induces p38 activation, which is inhibited in cGMP-dependent protein kinase (PKG)-knockout mouse platelets and PKG inhibitor-treated human platelets, indicating that activation of p38 is downstream from PKG in the signaling pathway. p38AF or p38 inhibitors diminish PKG-induced phosphorylation of extracellular stimuli-responsive kinase (ERK), which also is important in integrin activation. Thus, p38 plays an important role in mediating PKG-dependent activation of ERK. These data delineate a novel signaling pathway in which platelet agonists sequentially activate PKG, p38, and ERK pathways leading to integrin activation.

published proceedings

  • Blood

altmetric score

  • 3

author list (cited authors)

  • Li, Z., Zhang, G., Feil, R., Han, J., & Du, X.

citation count

  • 136

complete list of authors

  • Li, Zhenyu||Zhang, Guoying||Feil, Robert||Han, Jiahuai||Du, Xiaoping

publication date

  • February 2006

published in