Impaired Platelet Responses to Thromboxane a2 and Thrombin in Mice Lacking Receptor-Interacting Protein Kinase 3 Academic Article uri icon

abstract

  • Abstract Objective: Receptor-interacting protein 3 (RIP3) is a member of RIP family with a Ser/Thr protein kinase domain in its amino-terminus which is essential for kinase activity and autophosphorylation. The roles of RIP3 in embryonic development and different disease pathologies, such as inflammation and infections, have been reported in recent years. However, the role of RIP3 in thrombosis and hemostasis remains unknown. Methods: Hematologic analysis was performed and tail bleeding time was monitored. Mouse platelets were isolated from anti-coagulated whole blood. Platelet aggregation and secretion were recorded at real time. Platelet P-selectin exposure and specific fibrinogen binding were detected by flow cytometry. TXA2 generation was measured with enzyme immunoassay (EIA) kit. Protein phosphorylations were detected by western blotting. Result: RIP3-/- mice had tail-bleeding times that were significantly prolonged compared with their wild type littermates. In an in vivo model of mesenteric arteriole thrombosis, mice lacking RIP3 exhibited delayed thrombus formation, fewer accumulated platelets, smaller thrombi, and prolonged occlusion times. RIP3 was expressed in both human and mouse platelets. Deletion of RIP3 in mouse platelets caused a marked defect in aggregation and attenuated dense granule secretion in response to low doses of thrombin or a thromboxane A2 (TXA2) analogue, U46619. The defect in ADP secretion appears responsible for the impaired platelet aggregation, because addition of exogenous ADP rescued the reduced platelet aggregation. Although TXA2 generation and -granule secretion were not impaired, integrin IIb3 activation was attenuated in RIP3-/- platelets. Moreover, phosphorylation of Akt induced by U46619 or thrombin was markedly reduced in the absence of RIP3. Activation of Akt signaling restored the impaired aggregation of RIP3-/- platelets. ERK and p38 phosphorylation elicited by either U46619 or thrombin was attenuated in RIP3-/- platelets. In contrast, U46619- and thrombin-induced activation of PTEN, PDK1, or Src was not impaired in RIP3-/- platelets. Conclusion: Our data demonstrate a novel role for RIP3 in amplifying U46619- and thrombin-induced platelet activation by mediating Akt-dependent ADP secretion, and in supporting hemostasis and thrombus formation in vivo. RIP3 may represent a novel target to modulate PARs and TP signaling and a potential new target for antithrombotic strategy. Disclosures No relevant conflicts of interest to declare.

published proceedings

  • Blood

author list (cited authors)

  • Zhang, Y., Zhang, J., Yan, R., Zhang, J., Chen, M., Jiang, M., ... Dai, K.

citation count

  • 0

complete list of authors

  • Zhang, Yiwen||Zhang, Jian||Yan, Rong||Zhang, Jie||Chen, Mengxing||Jiang, Miao||Li, Zhenyu||Ruan, Changgeng||He, Sudan||Dai, Kesheng

publication date

  • December 2014

published in