FORCE AND MOMENT ROTORDYNAMIC COEFFICIENTS FOR PUMP-IMPELLER SHROUD SURFACES.
Conference Paper
Overview
Additional Document Info
View All
Overview
abstract
Governing equations of motion are derived for a bulk-flow model of the leakage path between an impeller shroud and a pump housing. The governing equations consist of a path-momentum, a circumferential-momentum, and a continuity equation. The fluid annulus between the impeller shroud and pump housing is assumed to be circumferentially symmetric when the impeller is centered; i. e. , the clearance can vary along the pump axis but does not vary in the circumferential direction. A perturbation expansion of the governing equations in the eccentricity ratio yields a set of zeroth and first-order governing equations. The zeroth-order equations define the leakage rate and the circumferential and path velocity distributions and pressure distributions for a centered impeller position.