Peschel, Joshua Michael (2012-08). Mission Specialist Human-Robot Interaction in Micro Unmanned Aerial Systems. Doctoral Dissertation. Thesis uri icon

abstract

  • This research investigated the Mission Specialist role in micro unmanned aerial systems (mUAS) and was informed by human-robot interaction (HRI) and technology findings, resulting in the design of an interface that increased the individual performance of 26 untrained CBRN (chemical, biological, radiological, nuclear) responders during two field studies, and yielded formative observations for HRI in mUAS. Findings from the HRI literature suggested a Mission Specialist requires a role-specific interface that shares visual common ground with the Pilot role and allows active control of the unmanned aerial vehicle (UAV) payload camera. Current interaction technology prohibits this as responders view the same interface as the Pilot and give verbal directions for navigation and payload control. A review of interaction principles resulted in a synthesis of five design guidelines and a system architecture that were used to implement a Mission Specialist interface on an Apple iPad. The Shared Roles Model was used to model the mUAS human-robot team using three formal role descriptions synthesized from the literature (Flight Director, Pilot, and Mission Specialist). The Mission Specialist interface was evaluated through two separate field studies involving 26 CBRN experts who did not have mUAS experience. The studies consisted of 52 mission trials to surveil, evaluate, and capture imagery of a chemical train derailment incident staged at Disaster City. Results from the experimental study showed that when a Mission Specialist was able to actively control the UAV payload camera and verbally coordinate with the Pilot, greater role empowerment (confidence, comfort, and perceived best individual and team performance) was reported by a majority of participants for similar tasks; thus, a role-specific interface is preferred and should be used by untrained responders instead of viewing the same interface as the Pilot in mUAS. Formative observations made during this research suggested: i) establishing common ground in mUAS is both verbal and visual, ii) type of coordination (active or passive) preferred by the Mission Specialist is affected by command-level experience and perceived responsibility for the robot, and iii) a separate Pilot role is necessary regardless of preferred coordination type in mUAS. This research is of importance to HRI and CBRN researchers and practitioners, as well as those in the fields of robotics, human-computer interaction, and artificial intelligence, because it found that a human Pilot role is necessary for assistance and understanding, and that there are hidden dependencies in the human-robot team that affect Mission Specialist performance.

publication date

  • August 2012