Scheduling in dual gripper robotic cells for productivity gains
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
In many applications, robotic cells are used in repetitive production of identical parts. A robotic cell contains two or more robot-served machines. The robot can have single or dual gripper. The cycle time is the time to produce a part in the cell. We consider single part-type problems. Since all parts produced are identical, it is sufficient to determine the sequence of moves performed by the robot. The processing constraints define the cell to be a flowshop. The objective is the minimization of the steady-state cycle time to produce a part, or equivalently the maximization of the throughput rate. The purpose of this paper is to study the problem of scheduling robot moves in dual gripper robot cells functioning in a bufferless environment. We develop an analytical framework for studying dual gripper robotic cells and examine the cycle time advantage (or productivity advantage) of using a dual gripper rather than a single gripper robot. It is shown that an m-machine dual gripper robot cell can have at m ost double the productivity of its single gripper counterpart. We also propose a practical heuristic algorithm to compare productivity for given cell data. Computational testing of the algorithm on realistic problem instances is also described.